

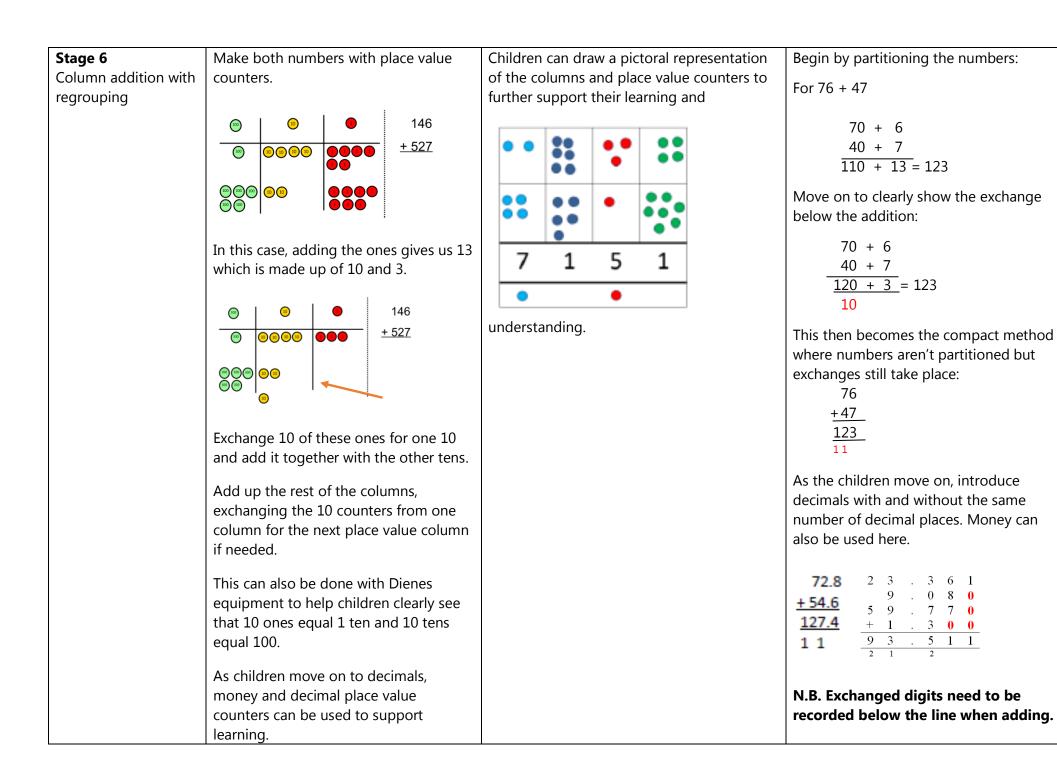
Edgewood Primary School

Building skills and values for life

CALCULATION POLICY

This policy lays out the expectations for both mental and written calculations for the 4 number operations and has been created to support the teaching of a mastery approach to mathematics. This is underpinned by the use of models and images that support conceptual understanding and this policy promotes a range of representations to be used across the primary years. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Dienes apparatus and place value counters), and then pictorial (e.g. bar models) to then facilitate abstract working (e.g. standard written methods). This policy is a guide through an appropriate progression of representations and if at any point a pupil is struggling with the abstract, they should revert to familiar pictorial and/or concrete materials/representations as appropriate.

Although this policy sets out the main methods of mental and written calculations to be taught, it has been appended with a list of recommendations and effective practice teaching ideas aimed at informing and enhancing teaching across all the primary phases. Many of these ideas come from the NCETM's Calculation Guidance document (published October 2015) which is intended to sit alongside a school's calculation policy.

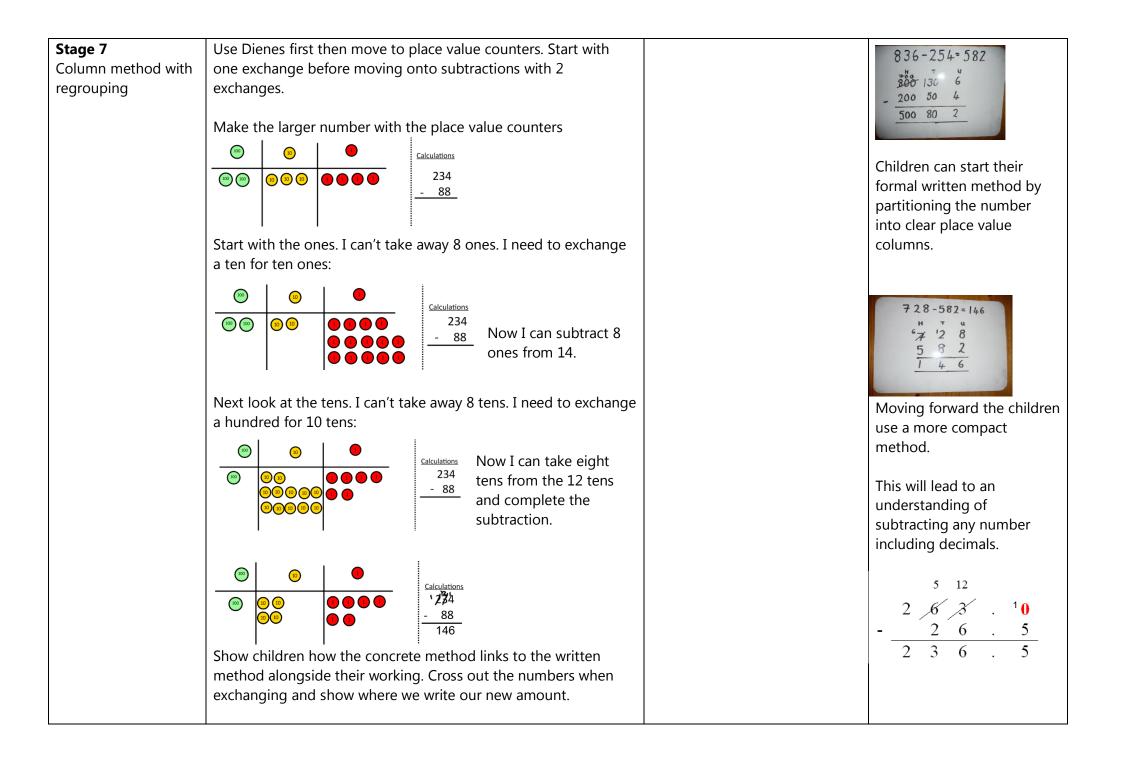

Progression in Calculations

Addition

Method	Concrete	Pictorial	Abstract
Stage 1 Counting a set of objects. This can include counting using fingers.			Image: Second
Stage 2 Combining 2 separate amounts to make 1 whole amount.	 For 4 + 3, count out 4 cubes then 3 more and group them together to see what they have altogether. This can also be represented in a bar. E.g. for 8 + 1: 	image: sympletic sympleti	5 Use the part-part whole diagram as shown above to move into the abstract. 4 + 3 = 7 10 = 6 + 4 Although number sentences are recorded in the concrete and pictorial methods, the abstract method sees the calculation carried out without the use of concrete or pictorial aids.

Stage 3 Start at the bigger number and count on		number on the bead string o the smaller number 1 by 1	numl For 6	Counting on in jumps of 1 using a number line with numbers on it. For $6 + 3 = 9$: 1 2 3 4 5 6 7 8 9 10 This can also be done in bigger jumps or 1 big						5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.		
			jump	to fir 2 + 5	= 17:	swer.	+	17 18	-+			
Stage 4 'The Magic 10' Regrouping to make 10 so that the calculation is easier.	Regroup 9 + 3 into 2 together:	10 + 2 before adding 6 + 5 = 11 Start with the bigger number and use the smaller number to make 10.	to ma Child	+ 5	= 14 $= 14$ =	ddin b usir	g. ng an + 2	n R p s +4 1 12 13 'emp' +2	aumb egro partiti malle	er lir oup o ion th er nu	ne mber	7 + 5 = 7 + 3 + 2 = 12 If I have seven, how many of my 5 do I need to add to make 10. How many more do I still need to add on?

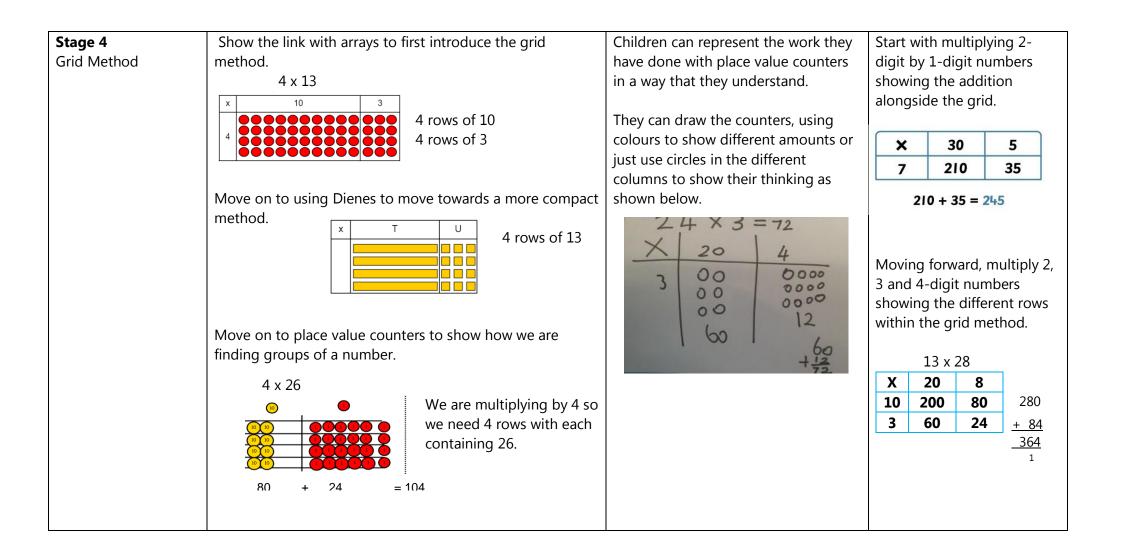
Stage 5	24 + 15 =	= 39	Partition the	After practically using the	e Dienes blocks and place	21 + 42 =
Column addition		1	numbers into tens	value counters, children o	can draw the counters to help	
without regrouping	Т	0	and ones using	them to solve additions.		21
			Dienes blocks. Add together the ones first then add the	32 + 23 = 55		+ <u>42</u>
			tens. Finally add	T	0	Record the calculation
	44 + 15 = 59	- 59	the 2 totals together.			vertically adding the column of ones then the column of tens.
	(1)		Move onto using place value			
	0000		counters.			
	(()					



Subtraction

Method	Concrete	Pictorial	Abstract
Stage 1 Taking away ones	Use physical objects, counters, cubes etc. to show how objects can be taken away. 6 - 2 = 4	Cross out drawn objects to show what has been taken away. 4-2 = 2 $A - 2 = 2$ $A - 2 =$	18 - 3 = 15 8 - 2 = 6 Although number sentences are recorded in the concrete and pictorial methods children are introduced to them on their own while encouraging them to
Stage 2 Counting back	Make the larger number in the subtraction. Move the beads along the bead string and count backwards in ones. 13 – 4	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line.	mentally take away ones. For 13 – 4, put 13 in your head and count back 4. What number are you at? Use your fingers to help.
	Use counters and move them away from the group counting backwards as they e.ch one is moved away.	-10 -10 -10 -10 -10 -10 -10 -10	

Stage 3 Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference.	+6 11-5=6 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$ Count on to find the difference.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
	S Pencils S Pencils	Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. 13 ? the difference between 2 numbers. 22	
Stage 4 Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part whole model. $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	5 10 Move to using numbers within the part whole model.


Stage 5	14 – 5 =		
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	13 - 7 = 6 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 	16 – 8= How many do we take off to reach the previous 10? (6) How many do we have left to take off? (2)
Stage 6 Column method without regrouping	75 - 42 Use Dienes blocks to make the bigger number then take the smaller number away.	Image: Calculations Draw the Dienes or place value counters alongside the written calculation to help show working.	Partitioned numbers are written vertically: For 54 – 22 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Multiplication

Method	Concrete	Pictorial	Abstract
Stage 1 Counting in multiples		13 m m m m m	Count out loud in multiples of a number. Write sequences with
		0 5 10 15 20 25 30	multiples of numbers. 2, 4, 6, 8, 10
	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	5, 10, 15, 20, 25 , 30
Stage 2 Repeated addition		5 + 5 + 5 = 15 5 5 5 5 Repeated addition can be shown on a labelled or	Write addition sentences to describe objects and pictures.
	Use different 3 + 3 + 3 equal groups.	empty number 5 10 15 line. Begin to relate repeated addition to multiplication using 'lots of' e.g. 3 lots of 5 = 15	2+2+2+2=10 This then leads to writing related multiplication sentences e.g. 2 x 5 = 10

Stage 3 Arrays- showing commutative multiplication		Create arrays using counters / cubes to show multiplication sentences. 4 x 6 = 24	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition.
	Begin to look at arrays in different orientations to r the link between, for exar 5 x 3 = 15 and 3 x 5 = 15 (commutativity)	nake	2×4=8 2×4=8 2×4=8 00 4×2=8 Link arrays to area of rectangles.	5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 5 x 3 = 15 3 x 5 = 15

Stage 5 Column multiplication	Children can continue to be supported by place value counters for carrying out column multiplication. They can partition and record each calculation vertically. $\underbrace{\begin{array}{c} \hline \\ \hline $	As with stage 4, children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking.	As with the grid method, numbers of more than one digit are partitioned but this time the calculation is recorded vertically. To support them, children need to write out what they are solving next to their answer. For 38×7 38×7 38×7 $210 \times 30 \times 7$ 266 Remind the children about the importance of lining up their numbers clearly in columns. This then moves to the more compact method of short multiplication:
	The idea of exchanging will support them in moving on to a more compact method: 3×324		For 38×7 Start by multiplying the ones digit, recording the last digit of the answer in the answer line but exchanging any tens and putting them under the tens column to be added on after multiplying the tens digit. Again, the last digit in the answer is recorded in the answer line and any hundred are exchanged, this time to the hundreds column, and so on.

Division

Method	Concrete	Pictorial	Abstract
Stage 1 Sharing objects equally	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use pictures or shapes to share quantities. 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	Share 9 buns between three people. 9 ÷ 3 = 3
Stage 2 Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?

Stage 3 Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Image: Constraint of the strate of the sector of the se	Find the inverse of multiplication and division sentences by creating four linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$
Stage 4 Division with a remainder	14 ÷ 3 = Divide objects into groups or share equally and see how much is left over.	Draw dots and group them to divide an amount and clearly show a remainder.	Children use knowledge of times table facts to quickly calculate divisions involving remainders. For example: $27 \div 5 = 5 r2$ Go on to combining knowledge of times tables with place value to calculate more difficult divisions. For example: $137 \div 4 = 34 r1$

Stage 5 Short division	3	Units 2 Calculations 42 ÷ 3	Use place value counters to divide using the bus stop method alongside 42 ÷ 3= Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.	Begin with divisions that divide equally with no remainder. $1 \ 8 \ 4$) 7 ³ 2 Move onto divisions with a remainder. $1 \ 9 \ r^{3} \ 4$) 7 ³ 9 This can also be recorded as a fraction: 19 ³ / ₄
		tl	Ve exchange this ten for ten ones and nen share the ones equally among the roups. ok at how much is in 1 group so the er is 14.		Finally move into decimal places to divide the total accurately. $(1 \ 9.7 \ 5)/(7 \ ^39.^30^2 \ 0)$ $(1 \ 4.6)/(35)/(5 \ 1^{16}1.^{21}0)$

Stage 6

Long division

	r	
ion	$ \begin{array}{c} 23 \text{ R.2} \\ 3)71 \\ -60 \\ 11 \\ -9 \\ 2 \end{array} $	$432 \div 15 \text{ becomes}$ $2 \ 8 \ r \ 12$ $1 \ 5 \ 4 \ 3 \ 2$ $3 \ 0 \ 0$ $1 \ 3 \ 2$ $1 \ 2 \ 0$ $1 \ 2 \ \text{Answer: 28 remainder 12}$
	Using dienes or place value counters, we start with 7 tens and 1 one, to be divided into 3 groups. We can put 2 tens in each group, so we write a 2 in the tens column. In all, we've put 6 tens into the groups (3 x 2 tens), so we write 6 tens (60) below. We are left with 11 (1 ten and 1 one). We will need to exchange the ten for 10 ones so we can put 3 ones in each group (using 9 ones in all), and we will have a remainder of 2.	432 ÷ 15 becomes $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
		$\frac{42}{15} = \frac{4}{5}$ $432 \div 15 \text{ becomes}$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		1 2 0 1 2 0 0 Answer: 28-8

Appendix

Listed below are a range of recommendations and teaching ideas aimed at informing and enhancing the teaching of primary mathematics:

<u>1.</u> Developing children's understanding of the = symbol

The = symbol is an assertion of equivalence. If we write 3 + 4 = 6 + 1 then we are saying that what is on the left of the = symbol is equivalent to what is on the right of the symbol. But many children interpret = as always being an instruction to work out the value of a calculation. This is as a result of always seeing it used as follows:

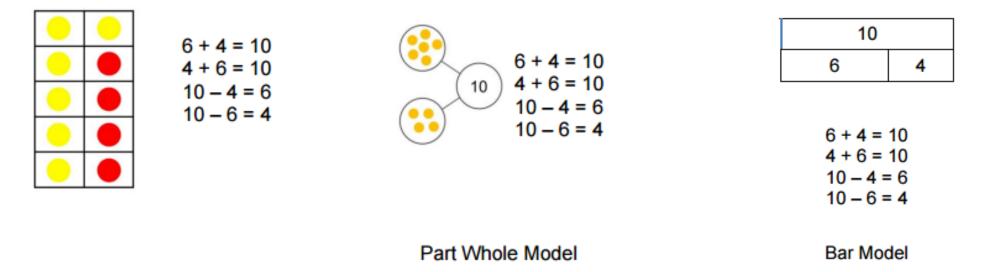
3 + 4 =

5 × 7 =

16 - 9 =

If children only think of = as meaning "Work out the answer to this calculation" then they are likely to get confused by empty box questions such as:

 $3 + \Box = 8$ and are are very likely to struggle with even simple algebraic equations, such as: 3y = 18. This can be overcome by doing the following:


- Vary the position of the = symbol e.g. $24 = 4 \times 6$
- Include lots of empty box problems e.g. $12 \Box = 4$; $\Box \times 6 = 24$
- Teach inequality alongside equality e.g. $5 + 9 \square 3 \times 5 (< > \text{ or } =?)$

2. Recognising the actual value of ones, tens, hundreds etc. in a number

Many children are able to recognise the value of each digit in a number like 347 but find it harder to explain, for example, how many tens there are in 347. Once they are able to recognise that there are 34 tens (rather than 4 tens), it makes it much easier to be able to carry out a calculation such as 347 + 30 as they are adding 3 tens to the 34 tens. Traditionally, children often struggle when tackling a calculation involving crossing over a hundred e.g. 293 + 10 but using this method takes much of the difficulty away as they only need to add 1 ten to the 29 tens to give 30 tens and an answer of 303. It is equally effective when subtracting e.g. for 112 - 20, we subtract 2 tens from the 11 tens to leave is with 9 tens and an answer of 92.

3. Reasoning about mathematical relationships

Children need to be exposed to images and structures that help them to make links between inverse operations from an early age

Opportunities should be taken wherever possible to demonstrate how children can use what they already know to work out a related fact e.g.:

- .- if 6 + 4 = 10, then 6 tens + 4 tens = 10 tens i.e. 60 + 40 = 100
- If you know 3 + 5, you can use this to work out 23 + 5

4. Developing children's fluency with basic number facts

Fluent computational skills are dependent on accurate and rapid recall of basic number bonds to 20 and times-tables facts. Research has shown that spending a short time every day on these basic facts quickly leads to improved fluency.

5. Developing fluency in mental calculations (The Magic 10)

Although the Magic 10 already has a place in this calculation policy, it is worth emphasising the importance of this approach. Children who learn to 'make 10' to create an easier calculation are able to develop mental fluency and an ability to look for patterns. Using knowledge of number bonds that make 10, they can see that 9 + 6 = 9 + 1 + 5 = 10 + 5 = 15